Status Of Inboard/Sterndrive Catalyst Testing

October 28, 2004

Outline

Regulatory Background

On-Water Demonstration Project

Other Related Issues

Conclusions

Outboard Engines

Personal Watercraft

Outboard/PWC Rulemakings

- 1996: Federal Outboard/PWC
 - Implemented in 1998
 - Standards gradually more stringent
 - Most stringent in 2006

Outboard/PWC Rulemakings

- 1998: California Outboard/PWC
 - Major contributor to weekend ozone
- 2001: Equal to 2006 Federal Standards
- 2004: 20% cleaner than CA 2001
- 2008: 65% cleaner than CA 2001
- Cost Effective

Benefits of Outboard/PWC Regulation

Statewide 2010 - Summer Weekend Day

Inboard Boat

Inboard Engine

Sterndrive Boat

Sterndrive Engine

Inboard/Sterndrive Rulemaking

- 2001: California Inboard/Sterndrive
 - Addresses remainder of gasoline recreational boat emissions
 - Catalyst-based standards adopted
 - Resolution 01-23: On-water Demonstration
 - Safety
 - Durability

Inboard/Sterndrive Emission Standards

- 2003: 16 g/kW-hr HC+NO_x
- 2007: 5 g/kW-hr HC+NO_x
 - **2007 45%**
 - **2008 75%**
 - **2009 100%**
- On-Board Diagnostics (OBD)
 - 2007 more basic
 - 2009 more advanced
- Cost Effective

Benefits of Inboard Regulation

Statewide 2020 - Summer Weekend Day

On-Water/Catalyst Project

Aim of Project

Demonstrate catalysts are safe

Demonstrate catalysts are durable

On-Water/Catalyst Project

Project Participants

- ARB: Project Manager
- NMMA: Boats and Engines
- MECA: Emission Control Devices
- U.S. Coast Guard: Boat Drivers
- SwRI: Project Contractor

On-Water/Catalyst Project

- Boats:
 - 4 Inboard/Sterndrive Boats
- Control System:
 - Catalyst Exhaust Systems
 - Closed-Loop Fuel Control
- Test Plan:
 - 0-hour, On-Water, 480-hour Sampling

Exhaust Manifold Cutaway

Exhaust Manifold Water

Jacket

Point of Water and Exhaust Mixing

Water Level

Jacket Water Inlet

Catalyzed Exhaust System

Catalyzed Inboard Engine

HC+NO_x Emissions (0-hour): Baseline vs. Catalyst

HC+NO_x Emissions: 0-Hour vs. 480-Hour

Exhaust "Skin" Temperature

Project Issues

Some mechanical problems

- Cracked manifolds
- Hot-start issue
- Propeller replacement
- No impact on catalyst durability or safety
- Mechanical problems not related to catalysts or emission control systems

Other Issues

- U.S. EPA Activity
 - Proposing Evaporative Standards
 - Proposing Carbon Monoxide (CO) Standards?
 - Harmonizing with California?
 - Early 2005 Proposal

Other Issues (cont'd.)

- CO Emissions and Exposure
 - 1,200 ppm endangers health
 - NIOSH "REL" standard: 35 ppm (200 ppm ceiling)
 - CO concentrations from non-catalyst engines
 - Lake Norman, NC: 500-1,000 ppm (peak above 1,000)
 - CO concentrations from catalyst-equipped engines
 - Canyon Lake, TX: below 35 ppm (peak below 200)
 - U.S. Coast Guard "CO workshops"
 - Legislation: AB 2222

Other Issues (cont'd.)

Industry's Requests

- Change implementation date
 - Regs contain a 2007-2009 phase-in
 - Industry prefers a 100% implementation in 2008
 - Air Quality impact is small

Other Issues (cont'd.)

Industry's Requests

- Emission "averaging" for 500+ hp engines
- On-Board Diagnostics for Catalysts
 - Regs contain a 2007-2009 phase-in
 - Industry prefers a 2008-2012 phase-in
- Salt water testing

Conclusions

- Demonstration showed:
 - Catalysts are safe and durable
 - Catalyst-based emission standards are achievable
- Staff will continue discussions with industry on possible regulatory changes
- Salt water testing
- Staff will update the Board, if necessary